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The description of fermions on curved manifolds or in curvilinear coordinates usually
requires a vielbein formalism to define Dirac γ -matrices or Pauli matrices on the
manifold. Derivatives of the vielbein also enter equations of motion for fermions through
the spin connection, which gauges local rotations or Lorentz transformations of tangent
planes.

The present paper serves a dual purpose. First we will see how the zweibein formalism
on surfaces emerges from constraining fermions to submanifolds of Minkowski space.
In the second part, I will explain how in two dimensions the zweibein can be absorbed
into the spinors to form half-order differentials. The interesting point about half-order
differentials is that their derivative terms along a two-dimensional submanifold of
Minkoski space look exactly like ordinary spinor derivatives in Cartesian coordinates
on a planar surface, although there is a prize to pay in the form of a local mass term. The
advantage of half-order differentials is that they allow for the use of the conformal field
concept of conformal field theory even in low-dimensional fermion systems without
conformal symmetry.
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1. INTRODUCTION

Low-dimensional electron systems play an important role in the theoretical
modeling of surfaces and interfaces in condensed matter physics, and naturally
also arise in the description of quasi one-dimensional systems and quantum wires.
Interfaces are crucial for thermodynamic, magnetic and conductivity properties of
materials (Lüth, 2001; Mönch, 2001). The study of quasi one-dimensional systems
is driven by the desire to understand the properties of particular materials with
distinguished one-dimensional subsystems and also teaches us important lessons
on general magnetic interactions in the more easily analyzed framework of spin
chains.
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The purpose of the present note is to draw attention to the existence of a
mathematical formalism for the description of low-dimensional fermions, which
is equivalent to the standard spinor formalism but closely related to techniques
used in two-dimensional conformal field theory. The latter usually invokes confor-
mal symmetry of a critical system, and assumes a phenomenological description
of degrees of freedom in terms of fields of given conformal weights. However,
as will be pointed out below, components of spinor wave functions reduced to
two-dimensional submanifolds of Minkowski space can be mapped into confor-
mal fields of weights (1/2, 0) and (0, 1/2) in every low-dimensional system. This
observation should be helpful in bridging the gap between the rich body of work
on low-dimensional systems, which uses conventional spinor formalism, and the
more specialized work in two-dimensional conformal field theory. The motiva-
tion for the present work goes back to the observation that fermionic degrees of
freedom on the world sheets of superstring theory are naturally described in terms
of half-order differentials (Dick, 1992). The major difference to low-dimensional
systems in condensed matter physics is that the fermionic degrees of freedom of su-
perstrings come without mass terms on the world sheet, while low-dimensonional
electrons or fermionic quasi-particles have mass. Given the importance of low-
dimensional systems for electronics, nanotechnology and materials science, it
appears prudent to draw attention to the possibility of a complementary descrip-
tion of low-dimensional fermions.

Half-order differentials (or half-differentials, for short) � are defined
through their characteristic transformation behavior under coordinate changes.
This transformation behavior is most easily expressed in terms of conformal
transformations of conformal or isothermal coordinates z and z̄ on the surface
(Hawley and Schiffer, 1966),

z → z′(z), z̄ → z̄′(z̄),

�√
z(z, z̄) → � ′√

z
(z′, z̄′) = �√

z(z, z̄)

√
dz

dz′ , (1)

�√
z̄(z, z̄) → � ′√

z
(z′, z̄′) = �√

z(z, z̄)

√
dz̄

dz̄′ ,

see Section 3 and the appendix for a more detailed explanation and for the
definition of conformal coordinates on curved surfaces. In the language of
two-dimensional conformal field theory, half-differentials are conformal fields of
conformal weights (1/2, 0) or (0, 1/2), respectively. Two-dimensional conformal
field theory is usually applied in the theory of two-dimensional critical models,
where the conformal weights of the fields are part of the critical exponents
of a specific model. One objective of the present paper is to point out that
“conformal fields" in two dimensions also appear naturally in the description of



1336 Dick

low-dimensional systems, without being necessarily tied to critical phenomena
or conformal invariance. We will proceed through most of this paper using
isothermal coordinates, after introducing the proper notion of conformal gauge
for coordinates in Section 3. However, I would like to emphasize that isothermal
coordinates are convenient, but not necessary for the definition of half-differentials
in terms of a factorized transformation law like (1) under two-dimensional coordi-
nate transformations. The covariant generalization of Eq. (1) for arbitrary sets of
coordinates on surfaces was found in Dick (1992) and is described in the appendix.

The name half-order differential seems to have been coined by Hawley and
Schiffer (1966), and stems from their geometric invariance property,

� ′√
z
(z′, z̄′)

√
dz′ = �√

z(z, z̄)
√

dz, � ′√
z
(z′, z̄′)

√
dz̄′ = �√

z̄(z, z̄)
√

dz̄. (2)

In Sections 3 and 4 we will identify one-to-one mappings between low-dimensio-
nal spinors and half-differentials. The mappings are trivial in Cartesian coordinates
on planar surfaces or static wires, but in general coordinate systems or on curved
surfaces, or on wires with time-dependent shapes, the description of fermions
in terms of half-differentials is complementary to the use of spinors. Since the
connection between half-differentials and spinors is tied to two dimensions, it
works best for equilibrium phenomena on surfaces or dynamical phenomena on
wires. However, it is instructive to see how the mapping affects time derivatives
for fermions on a surface, and therefore we will retain the time derivative terms
when performing the transformation of the Lagrangian for surface electrons.

For the conventions concerning the counting of dimensions, a “three-
dimensional” spinor is a spinor in four-dimensional Minkowski space, a “two-
dimensional” spinor is a spinor which may depend on two space-like coordinates
and time, and a “one-dimensional” spinor describes motions of a fermion on a
wire. The coordinates on a space-like surface or a wire will be denoted by {ξ 1, ξ 2}
or w, respectively. In the case of fermions on a space-like surface, the shorthand
notation f (ξ, t) ≡ f (ξ 1, ξ 2, t) is used.

For the outline of the paper, we will first consider the reduction of three-
dimensional bulk spinors to two-dimensional spinors on surfaces in Section 2.
The mapping between two-dimensional spinors and half-differentials will be es-
tablished in Section 3. The corresponding mapping for fermions on a wire is
introduced in Section 4. Section 5 contains a brief comment on the existence of
spinors and half-differentials on two-dimensional manifolds, and Section 6 ex-
plains the mapping between spinors and half-differentials in the particular case
of spherical surfaces. Section 7 contains our conclusions. The generalization of
Eq. (1) and the general form of the mapping between low-dimensional spinors and
half-differentials for non-isothermal coordinates is given in the appendix.



Half-Differentials versus Spinor Formalism for Fermions 1337

2. SPINORS ON SURFACES FROM SPINORS IN MINKOWSKI SPACE

A proper derivation of the connection between spinors and half-differentials
proceeds through the relativistic formulation for fermions. The setting is a static
surface S in a flat ambient three-dimensional space. Our restricted space-time
arena for particles moving on S is therefore S × R, where R stands for the time
t . The ambient four-dimensional Minkowski space is triangulated with inertial
coordinates x0 = ct and xi , 1 ≤ i ≤ 3, and local coordinates on the surface S are
denoted by ξa , 1 ≤ a ≤ 2. Unit vectors along the coordinate axes in Minkowski
space are denoted by �uµ, �u0 · �u0 = 1, �u2

i = 1. Greek indices µ, ν from the middle
of the alphabet take values 0 ≤ µ, ν ≤ 3 and refer to vectors and tensor com-
ponents in an inertial basis of four-dimensional Minkowski space. Greek indices
α, β, γ from the beginning of the alphabet take values 0 ≤ α, β, γ ≤ 2 and refer
to a coordinate basis on the generically curved three-dimensional space S × R.

Embeddings of local coordinate patches � of the static surface S in
Minkowski space are given by xi = xi(ξ 1, ξ 2). The induced tangent vectors along
the coordinate lines on S × R are

�ea(ξ ) = ∂a �x(ξ ) =
3∑

i=1

�ui∂ax
i(ξ ), (3)

and the induced metric on the surface is

gab(ξ ) = �ea(ξ ) · �eb(ξ ) = ∂a �x(ξ ) · ∂b �x(ξ ). (4)

Dual basis vectors in the tangent planes of S are

�ea(ξ ) =
2∑

b=1

gab(ξ )�eb(ξ ), gab(ξ ) = �ea(ξ ) · �eb(ξ ).

A projector of vectors onto the tangent space at the point ξ on S is

P (ξ ) =
2∑

a=1

�ea(ξ ) ⊗ �ea(ξ ). (5)

The Christoffel symbols on S

	a
bc(ξ ) = �ea(ξ ) · ∂c�eb(ξ ),

2∑
a=1

�ea(ξ )	a
bc(ξ ) = P (ξ ) · ∂c�eb(ξ ), (6)

define the covariant derivatives of a tangent vector

�v(ξ ) =
2∑

a=1

va(ξ )�ea(ξ )
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through the projection of the partial derivatives onto the tangent spaces,

Da �v(ξ ) = P (ξ ) · ∂a �v(ξ ).

Local coordinates in a neighbourhood N containing the surface coordinate patch
� are given by {ξ 1, ξ 2, ξ⊥}, and we choose ξ⊥ = 0 on the surface (e.g. ξ⊥ =
r − R on a sphere of radius R). Locally the map {ξ 1, ξ 2, ξ⊥} ↔ {x1, x2, x3} is an
isomorphism, and the dual basis vectors on S can be written as

�ea =
3∑

i=1

�ui∂iξ
a

∣∣∣∣∣
ξ⊥=0

. (7)

We could go from Eq. (6) straight into discussions of the Dirac equation
on S × R, using standard vielbein techniques for spinors on curved manifolds.
But it is more instructive to actually follow the emergence of the Dirac equation
on S × R from the Dirac equation in the ambient space, in a simple electron–
surface interaction model. This motivates the discussion of the Dirac equation on
the surface, and explains the emergence of the zweibein and the spin connection
on the surface. We therefore assume that electrons are attracted to the surface S
through a potential

V (ξ⊥) = −e
(ξ⊥) = −W�(� − |ξ⊥|) (8)

with 0 < W < 2mc2,

γ 0
(
i hc∂0 + W�(� − |ξ⊥|))ψ(�x, t) + i hcγ · ∇ψ(�x, t) − mc2ψ(�x, t) = 0.

(9)

We assume W < 2mc2 to avoid pair creation at the potential threshold, which is
the source of the Klein paradox (otherwise the potential would have to be treated
as a dynamical field, which would at least partly decay due to pair creation).
For electrons of energy E < W , the potential will imply an exponential fall off
outside of the surface over a bulk penetration length hc/

√
m2c4 − (W − E)2, and

eventually we can neglect bulk effects and gradients orthogonal to S on length
scales on the surface which are large compared to the penetration length.

For the calculation of the induced Dirac operator and γ matrices on S × R,
we note that in N

γ 0∂0ψ(�x, t) + γ · ∇ψ(�x, t)

= γ 0∂0ψ(ξ, ξ⊥, t) +
2∑

a=1

γ · (∇ξa)∂aψ(ξ, ξ⊥, t) + γ · (∇ξ⊥)∂⊥ψ(ξ, ξ⊥, t).
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The induced Dirac operator on S × R is therefore

γ 0∂0 +
2∑

a=1

	a(ξ )∂a

with two-dimensional γ matrices

	a(ξ ) =
3∑

i=1

γ i∂iξ
a, 1 ≤ a ≤ 2, (10)

{	a(ξ ), 	b(ξ )} = −2
3∑

i,j=1

δij ∂iξ
a · ∂j ξ

b = −2�ea(ξ ) · �eb(ξ ) = −2gab(ξ ).

(11)

Equation (10) provides us with a triplet of 4 × 4 γ matrices {γ 0, 	1(ξ ), 	2(ξ )}
on the curved three-dimensional space-time S × R in terms of flat γ matrices
of the ambient bulk. The set {γ 0, 	1(ξ ), 	2(ξ )} of γ matrices must be reducible,
because every irreducible representation of the three-dimensional Clifford algebra
condition

{γ α, γ β} = −2gαβ

employs only 2 × 2 matrices, and there are exactly two equivalence classes of
such matrices. The reduction is particularly easy to see with Dirac bases of flat γ

matrices in four and three space-time dimensions.
The Dirac basis of γ matrices in four-dimensional Minkowski space is

γ 0 =
(

1 0

0 −1

)
, γ i =

(
0 σ i

−σ i 0

)
, 1 ≤ i ≤ 3. (12)

All the entries are 2 × 2 matrices, and the matrices σ i are the Pauli spin matrices.
For representations of the two different equivalence classes of γ matrices in three-
dimensional Minkowski space we can choose

γ 0
I =

(
1 0

0 −1

)
, γ 1

I =
(

0 1

−1 0

)
, γ 2

I =
(

0 −i

−i 0

)
,

γ 0
II =

(
1 0

0 −1

)
, γ 1

II =
(

0 1

−1 0

)
, γ 2

II =
(

0 i

i 0

)
. (13)
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The reduction of the 4 × 4 γ matrices γ µ, 0 ≤ µ ≤ 2, with respect to the three-
dimensional γ matrices γ

µ

I,II is given in terms of the spinor decomposition

ψD =

⎛
⎜⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

ψI,1

ψII,1

ψII,2

ψI,2

⎞
⎟⎟⎟⎠ . (14)

This means that the pairs of fermion states which transform irreducibly under
Lorentz transformations of the tangent space to the reduced space-time are the
states which are related by charge conjugation

ψD → ψD,c = iγ2ψ
∗
D,

i.e. the spin up electron mixes only with the spin up positron under Lorentz boosts
of the three-dimensional tangent space.

We can write the reduction of the four-dimensional spinor representation with
respect to spinor representations on the planes x3 = const. more conveniently with
the rotation matrix

M =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

⎞
⎟⎟⎟⎠ , M · γ µ · M−1 =

(
γ

µ

I 0

0 γ
µ

II

)
, 0 ≤ µ ≤ 2,

(15)
and the orthogonal matrix γ 3, which mixes the two irreducible representations,
becomes

M · γ 3 · M−1 = γ 1.

On the curved surface S, each tangent plane carries the two equivalence
classes of three-dimensional γ matrices (13), and the two equivalence classes
of fermions correspond to the two different spin orientations with respect to the
normal on the tangent plane. A normal component A⊥ of the vector potential
apparently couples the two equivalence classes.

On the other hand, if we would not have used the embedding of S × R in
the ambient four-dimensional Minkowski space and the ensuing induced Dirac
operator, we would have employed a zweibein formalism for the metric gab(ξ ) to
construct γ matrices on S in terms of flat two-dimensional γ matrices,

gab(ξ ) =
2∑

i=1

ea
i(ξ )ebi(ξ ), γ a(ξ ) =

2∑
i=1

ea
i(ξ )γ i. (16)
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We can make the connection between the pair of induced 4 × 4 γ matrices
{	1(ξ ), 	2(ξ )} from Eq. (10), and the zweibein construction (16) on S by gauging
away the γ 3 term in (10). This can be achieved through a rotation R of the tangent
plane to S into the (�u1, �u2)-plane. The tangent plane is spanned by �e1 and �e2, and
therefore we can construct the rotation by introducing the Cartesian vectors

�n1 = �e1

|�e1| ,

�n2 = �e2 − (�n1 · �e2)�n1√
�e2

2 − (�n1 · �e2)2
= �e2

1�e2 − (�e1 · �e2)�e1√
�e2

1

[�e2
1�e2

2 − (�e1 · �e2)2
] ,

�n⊥ = �n1 × �n2 = �e1 × �e2√
�e2

1�e2
2 − (�e1 · �e2)2

.

The rotation matrix is then given by

R(ξ ) =

⎛
⎜⎝

�nT
1

�nT
2

�nT
⊥

⎞
⎟⎠ . (17)

The corresponding spinor representation

U(ξ ) = U(R(ξ )) (18)

of the rotation will gauge away the γ 3 term in the γ matrices 	a(ξ ),

γ a(ξ ) = U(ξ ) · 	a(ξ ) · U−1(ξ ) =
2∑

i=1

ea
i(ξ )γ i. (19)

The Clifford algebra property

{γ a(ξ ), γ b(ξ )} = −2gab(ξ ) (20)

is also satisfied by the transformed γ matrices. We denote the resulting spinor
components after the transformation with complex indices,

U · ψD ≡ ψ =

⎛
⎜⎜⎜⎜⎝

ψ
√

z̄

χ
√

z

χ
√

z̄

ψ
√

z

⎞
⎟⎟⎟⎟⎠ . (21)

The motivation for this designation will become apparent in Eq. (29) below.
Replacing ψD with U−1 · ψ in the induced Dirac equation on S × R will

yield extra derivative terms ∂aU−1, which correspond to the spin connection terms
discussed below.
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The Clifford algebra relations (20) and {γ i, γ j } = −2δij imply the zweibein
property (16).

The spinor representation of rotations of tangent planes of S is given in terms
of the generator

S12 = i

2
γ1 · γ2 = 1

2

(
σ3 0

0 σ3

)
. (22)

and the zweibein components (16) can be used in the standard way to convert the
Christoffel symbols into a spin connection to gauge local rotations of the tangent
planes.

In the present setting of S × R, we keep the inertial time coordinate fixed and
also do not perform boosts or time-dependent rotations in the three-dimensional
Minkowski spaces tangent to S × R. The spin connection then has only 2 inde-
pendent coefficients due to e0

0 = 1, e0
i = ea

0 = 0,

	1
2c = ea

1
(
∂ce

a
2 + 	a

bce
b

2
) = �e1 · ∂c�e2 = −	2

1
c, (23)

and the spin connection is given by

�c(ξ ) = i	12c(ξ )S12 = −1

2
	12c(ξ )γ1 · γ2. (24)

It gauges local rotations of the tangent planes of S,

R(ξ ) = exp[iϕ(ξ )L12] =
(

cos ϕ(ξ ) sin ϕ(ξ )

− sin ϕ(ξ ) cos ϕ(ξ )

)
,

U (ξ ) = exp[iϕ(ξ )S12] = exp

[
i

2
ϕ(ξ )

(
σ3 0
0 σ3

)]
,

e′a
i(ξ ) =

2∑
j=1

Ri
j (ξ )ea

j (ξ ), ψ ′(ξ, t) = U (ξ ) · ψ(ξ, t),

ψ
′
(ξ, t) = ψ(ξ, t) · U−1(ξ ),

because the spin connection transforms according to

�′
a(ξ ) = U (ξ ) · �a(ξ ) · U−1(ξ ) + U (ξ ) · ∂aU

−1(ξ ).

The corresponding covariant derivatives are

Daψ(ξ, t) = ∂aψ(ξ, t) + �a(ξ ) · ψ(ξ, t),
(25)

Daψ̄(ξ, t) = ∂aψ̄(ξ, t) − ψ̄(ξ, t) · �a(ξ ).

It is well known that the spin connection on a surface does not appear in the
fermion action if the derivative terms are split symmetrically between ψ and ψ̄ ,



Half-Differentials versus Spinor Formalism for Fermions 1343

see Eq. (30) below. This is due to the fact that the two-dimensional spin connection
(24) anti-commutes both with γ 1 and γ 2,

{�a, γ
i} = 0, 1 ≤ i ≤ 2.

Of course, the spin connection re-appears in the equations of motion through the
derivatives of the zweibein if we insist on the use of spinors for the fermion wave
functions. However, the zweibein and the spinor wave functions can be combined
to form half-order differentials on S, and this will eliminate the spin connection
on S from the equations of motion.

3. FERMIONS AND HALF-DIFFERENTIALS ON SURFACES

It is not necessary, but very convenient for the discussion of half-differentials
to choose the parameters ξa on the surface S in such a way that the induced metric
(4) on S is conformally flat,

gab(ξ ) = exp [2φ(ξ )] δab, ea
i(ξ ) = exp [φ(ξ )] Ra

i(ξ ), (26)

where Ra
i(ξ ) can be an arbitrary local rotation matrix. If we start with arbitrary

parameters ξ (0)a on the surface, the requirement to find new parameters ξa which
satisfy the conformal gauge condition (26) amounts to two coupled second order
differential equations which can always be solved. Modern proofs usually proceed
by demonstrating convergence of the iterative solution of the conformal gauge
conditions through Green’s functions (Chern, 1955; Courant and Hilbert, 1962;
Lehto, 1977). The gauge (26) is known as conformal gauge, and the corresponding
parameters ξa are denoted as isothermal or conformal coordinates. In complex
conformal coordinates

z = ξ 1 + iξ 2

the gauge conditions (26) read

gzz(z, z̄) = 0, gzz̄(z, z̄) = 1

2
exp [2φ(z, z̄)] = 1

2
√

g.

We also introduce a corresponding complex notation for the non-holonomic index
i of the zweibein, such that e.g. (note δzz̄ = 1/2)

ez
z = ez

1 + iez
2 = 1

2
e1

1 − 1

2
ie2

1 + 1

2
ie1

2 + 1

2
e2

2 = exp(φ − iα),

ez̄
z̄ = exp(φ + iα), ez

z̄ = ez̄
z = 0,

ezz̄ = ez̄z
∗ = 1

2
exp(φ − iα), ezz = ez̄z̄ = 0, (27)

ez
z = ez̄

z̄
∗ = exp(−φ + iα), ez

z̄ = ez̄
z = 0.
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The functions φ and α are time-independent for our static surface S. The arbitrary
local phase α(ξ ) is the remnant of the local rotation matrix Ra

i(ξ ) in Eq. (26).
Please keep in mind that the first index of a zweibein is always a coordinate index
which transforms in a vector representation under coordinate transformations on
the surface S, while the second index is a tangent plane index which transforms
under rotations of the tangent plane.

Under rotations of the tangent plane, the complex components of a tangent
vector �v transform according to

v′z = exp(−iϕ)vz (28)

while the components of the spinor (14) transform according to

ψ ′√z̄ = exp
( i

2
ϕ
)

ψ
√

z̄, ψ ′√z = exp
(
− i

2
ϕ
)

ψ
√

z, (29)

χ ′√z = exp
(
− i

2
ϕ
)

χ
√

z, χ ′√z̄ = exp
( i

2
ϕ
)

χ
√

z̄.

This explains our assignment of complex indices in Eq. (21). (ψ
√

z)2 transforms
like a tangent vector vz under tangent plane rotations.

The Lagrange density for fermions with charge q on a curved space-time
with metric

Gµν = Eµ
mEν

nηmn

is

L = 1

2

√−GEµ
m

[
i h

(
ψ̄ · �µ − ∂µψ̄

) · γ m · ψ + i hψ̄ · γ m · (
∂µψ + �µ · ψ

)

+ 2qψ̄ · γ mAµ · ψ
] − mc

√−G ψ̄ψ.

In the present case this reduces to

L = gzz̄

[
i h

(
ψ̄ · γ 0 · ∂0ψ − ∂0ψ̄ · γ 0 · ψ

) + 2qψ̄ · γ 0A0 · ψ (30)

+ i hez
z

(
ψ̄ · γ z · ∂zψ − ∂zψ̄ · γ z · ψ

) + 2qez
zψ̄ · γ zAz · ψ

+ i hez̄
z̄

(
ψ̄ · γ z̄ · ∂z̄ψ − ∂z̄ψ̄ · γ z̄ · ψ

) + 2qez̄
z̄ψ̄ · γ z̄Az̄ · ψ − 2mcψ̄ψ

]
=− 2iLzz̄.

The extraction of the factor −2i in the definition of Lzz̄ is due to

dξ 1dξ 2 = i

2
dzdz̄,

so that the Lagrangian is

L =
∫

dξ 1dξ 2 L =
∫

dzdz̄Lzz̄.
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The γ matrices with complex tangent space indices are

γ z = γ 1 + iγ 2 =
(

0 σ+
−σ+ 0

)
, γ z̄ = γ 1 − iγ 2 =

(
0 σ−

−σ− 0

)
. (31)

We should amend the action (30) with the mixing term

�L = 2qgzz̄ψ̄ · γ 3A⊥ · ψ (32)

because S × R is embedded in four-dimensional Minkowski space.
In the next step, we insert Eqs. (21, 31) and the adjoint spinor

ψ̄ = ψ+γ 0 =
(
ψ∗√

z, χ∗√
z̄,−χ∗√

z,−ψ∗√
z̄
)

(33)

into the sum of Eqs. (30) and (32) to find

Lzz̄ = gzz̄

[ h

2

(
∂0ψ

∗√
z · ψ

√
z̄ − ψ∗√

z · ∂0ψ
√

z̄ + ∂0χ
∗√

z̄ · χ
√

z − χ∗√
z̄ · ∂0χ

√
z

+ ∂0χ
∗√

z · χ
√

z̄ − χ∗√
z · ∂0χ

√
z̄ + ∂0ψ

∗√
z̄ · ψ

√
z − ψ∗√

z̄ · ∂0ψ
√

z
)

+ iqA0

(
ψ∗√

z · ψ
√

z̄ + χ∗√
z̄ · χ

√
z + χ∗√

z · χ
√

z̄ + ψ∗√
z̄ · ψ

√
z
)

+ iqA⊥
(
ψ∗√

z · χ
√

z̄ − χ∗√
z̄ · ψ

√
z + χ∗√

z · ψ
√

z̄ − ψ∗√
z̄ · χ

√
z
)

− imc
(
ψ∗√

z · ψ
√

z̄ + χ∗√
z̄ · χ

√
z − χ∗√

z · χ
√

z̄ − ψ∗√
z̄ · ψ

√
z
) ]

+ ez̄z

[
h

(
∂zψ

∗√
z · ψ

√
z + ∂zχ

∗√
z · χ

√
z − ψ∗√

z · ∂zψ
√

z − χ∗√
z · ∂zχ

√
z
)

+ 2iqAz

(
ψ∗√

z · ψ
√

z + χ∗√
z · χ

√
z
) ]

+ ezz̄

[
h

(
∂z̄ψ

∗√
z̄ · ψ

√
z̄

+ ∂z̄χ
∗√

z̄ · χ
√

z̄ − ψ∗√
z̄ · ∂z̄ψ

√
z̄ − χ∗√

z̄ · ∂z̄χ
√

z̄
)

+ 2iqAz̄

(
ψ∗√

z̄ · ψ
√

z̄ + χ∗√
z̄ · χ

√
z̄
) ]

. (34)

This is an unwieldy looking equation, but we can combine the spinor and zweibein

components into half-differentials

�√
z = √

ezz̄ψ
√

z̄, �√
z̄ = √

ez̄zψ
√

z, ϒ√
z = √

ezz̄χ
√

z̄, ϒ√
z̄ = √

ez̄zχ
√

z,

(35)

because the derivatives of the zweibein components will cancel in the alternating
derivative terms in (34). Note that the spinor components are invariant under
coordinate transformations, but transform under tangent plane rotations. The half-
differentials, on the other hand, are invariant under tangent plane rotations and
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transform according to Eq. (1) under conformal gauge preserving coordinate
transformations.

We also use the equation

gzz̄ = 2ezz̄ez̄z.

The Lagrange density written in terms of the half-differentials (35),

Lzz̄ = Lzz̄,⊥ + Lzz̄,m + Lzz̄,‖, (36)

contains a single factor
√

ezz̄ez̄z as a reminder of the background geometry in the
orthogonal derivative and potential terms

Lzz̄,⊥ = √
ezz̄ez̄z

[
h
(
∂0�

∗√
z̄
· �√

z − �∗√
z̄
· ∂0�

√
z + ∂0ϒ

∗√
z
· ϒ√

z̄ − ϒ∗√
z
· ∂0ϒ

√
z̄

+ ∂0ϒ
∗√

z̄
· ϒ√

z − ϒ∗√
z̄
· ∂0ϒ

√
z + ∂0�

∗√
z
· �√

z̄ − �∗√
z
· ∂0�

√
z̄

)
+ 2iqA0

(
�∗√

z̄
· �√

z + ϒ∗√
z
· ϒ√

z̄ + ϒ∗√
z̄
· ϒ√

z + �∗√
z
· �√

z̄

)
+ 2iqA⊥

(
�∗√

z̄
· ϒ√

z − ϒ∗√
z
· �√

z̄ + ϒ∗√
z̄
· �√

z − �∗√
z
· ϒ√

z̄

)]
and in the mass term

Lzz̄,m = 2imc
√

ezz̄ez̄z

(
�∗√

z
· �√

z̄ − �∗√
z̄
· �√

z + ϒ∗√
z̄
· ϒ√

z − ϒ∗√
z
· ϒ√

z̄

)
,

but the derivative and potential terms in the surface look exactly like an action for
a spinor on a flat plane,

Lzz̄,‖ = h
(
∂z�

∗√
z̄
· �√

z̄ + ∂zϒ
∗√

z̄
· ϒ√

z̄ − �∗√
z̄
· ∂z�

√
z̄ − ϒ∗√

z̄
· ∂zϒ

√
z̄

)
+ 2iqAz

(
�∗√

z̄
· �√

z̄ + ϒ∗√
z̄
· ϒ√

z̄

) + 2iqAz̄

(
�∗√

z
· �√

z + ϒ∗√
z
· ϒ√

z

)
+ h

(
∂z̄�

∗√
z
· �√

z + ∂z̄ϒ
∗√

z
· ϒ√

z − �∗√
z
· ∂z̄�

√
z − ϒ∗√

z
· ∂z̄ϒ

√
z

)
.

Naively, in a gauge α(z, z̄) = 0, one could think of the mapping (35) as
a scale transformation between spinors, but that interpretation is actually not
correct. The mapping between spinors and half-differentials is a mapping between
entities with different geometric transformation properties. It is important to keep
this in mind, because only then does it become clear that the field �√

z̄ and its
companions are fields with half-integer conformal weight in the parlance of two-
dimensional conformal field theory, and that the resulting action S is invariant
under coordinate transformations z → z′(z). Please also note that the mapping
(35) is even relevant in the seemingly trivial case of a planar surface. It is only
hidden if one uses Cartesian coordinates on the plane, but as soon as conformal
coordinate transformations z → z′(z) are introduced, it again provides the link
between the spinor and conformal field description of two-dimensional fermions.

The virtue of Eq. (36) is to provide an explicit connection between ac-
tual fermionic degrees of freedom on space-like surfaces and the corresponding
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notions used in two-dimensional conformal field theory. Eq. (36) also tells us that
if we want to use conformal field theory techniques for dynamical phenomena and
massive fermions on surfaces, we have to cope with the given background geome-
try and conformal coordinate transformations through the (1/2, 1/2) differential2√

ezz̄ez̄z.

4. FERMIONS ON A WIRE

We now reduce the number of dimensions further by considering fermions
moving in one space-like dimension - a wire. However, we treat this problem in
more generality than electrons confined to a static space-like surface by allowing
the form of the wire to change with time. The embedding of the wire in the ambient
flat Minkowski space therefore has the form w → xi(w, t), 1 ≤ i ≤ 3, where w

is a coordinate along the wire.
Now our two-dimensional manifold carrying the half-differentials is the world

sheet W traced out by the wire as it moves through space-time. The induced metric
on W has local components

g00 = −1 + (∂0 �x(w, t))2, g0w = ∂0 �x(w, t) · ∂w �x(w, t), gww = (∂w �x(w, t))2.

It is very convenient to change coordinates t, w → τ, σ on W such that the
conformal gauge conditions

gττ + gσσ = 0, gτσ = 0

are satisfied. For surfaces with Minkowski signature the proof that conformal
gauge can be achieved proceeds by covering the coordinate neighbourhoods on
W with characteristics of the gauge conditions (Dick, 1989). The characteristics
correspond to the new coordinate lines. Note that for a static wire only a local
rescaling of w would be needed.

As in the previous case of S, switching to conformal gauge is not necessary,
because the covariant conformal field formalism described in the appendix also
works on surfaces with Minkowski signature. But the equations are much nicer in
conformal gauge.

We denote the remaining degree of freedom in the metric after conformal
gauge fixing by φ(τ, σ ),

gσσ = −gττ = exp(2φ).

The metric in the corresponding two-dimensional light cone coordinates

ξ± = σ ± τ, ∂± = 1

2
(∂σ ± ∂τ )

2 Please keep in mind that only the first index of a zweibein transforms under coordinate transformations,
while the second index transforms under rotations of tangent planes. This makes

√
ezz̄ez̄z a (1/2, 1/2)

differential under coordinate transformations.
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is

g++ = g−− = 0, g+− = 1

2
exp(2φ) = 1

2

√−g.

This corresponds to zweibein components eα
a (note η+− = 1/2),

e++ = exp(φ − u), e−− = exp(φ + u), e+− = e−+ = 0.

We will also quote the components with different index positions for reference in
the calculation of the spinor Lagrangian on the wire,

e++ = exp(−φ + u), e−− = exp(−φ − u), e+− = e−+ = 0,

e+− = 1

2
exp(φ − u), e−+ = 1

2
exp(φ + u), e++ = e−− = 0.

The first index of the zweibein is always a world sheet index which transforms
under coordinate transformations on the world sheet. The second index is a tangent
plane index which transforms under Lorentz boosts of the tangent plane. Note that
the set of orientation preserving coordinate transformations is restricted to

ξ+ → ξ ′+(ξ+), ξ− → ξ ′−(ξ−),

because we exclusively work in conformal gauge. The arbitrary local parameter
u(ξ+, ξ−) is a consequence of the possibility to perform local Lorentz boosts in
the tangent planes to the world sheet of the wire.

Next we consider a boost with parameter

u = artanh(β) = 1

2
ln

(
1 + β

1 − β

)

in the tangent plane at the point with coordinates ξ = (τ, σ ). This transforms a
tangent space vector va(ξ ) in the standard way,

v′0 = v0 − βv1√
1 − β2

, v′1 = v1 − βv0√
1 − β2

,

or in a light cone basis v± = v1 ± v0 in the tangent plane:

(
v′+

v′−

)
=

⎛
⎜⎝

(
1−β

1+β

)1/2
0

0
(

1+β

1−β

)1/2

⎞
⎟⎠

(
v+

v−

)
. (37)

In the light cone basis of the tangent plane, the only non-vanishing components
of the boost matrix in the vector representation are

�++ = exp(−u) =
(

1 − β

1 + β

)1/2

, �−− = exp(u) =
(

1 + β

1 − β

)1/2

.
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This is similar to the transformation of spinor components in the tangent
plane. We use a Weyl basis of γ matrices in the tangent planes of W ,

γ0 =
(

0 1

1 0

)
, γ1 =

(
0 1

−1 0

)
. (38)

The spinor representation of the boost generator

S10 = i

2
γ1γ0 = i

2

(
1 0

0 −1

)

yields the spinor transformation law(
ψ ′√+

ψ ′√−

)
= exp(iuS10) ·

(
ψ

√+

ψ
√−

)
= exp

[
−u

2

(
1 0

0 −1

)] (
ψ

√+

ψ
√−

)
(39)

=
(

exp(−u/2) 0

0 exp(u/2)

)(
ψ

√+

ψ
√−

)

=

⎛
⎜⎝

(
1−β

1+β

)1/4
0

0
(

1+β

1−β

)1/4

⎞
⎟⎠

(
ψ

√+

ψ
√−

)
.

The fact that two-dimensional spinors transform with the square root of the
vector representation of the Lorentz boost motivated our assignment of indices to
the components of the two-dimensional Dirac spinor in the Weyl basis. (ψ

√+)2

and (ψ
√−)2 transform like the components of a tangent vector in a light cone

basis.
To write down the fermion action on the wire, we need to write a few more

quantities in light cone coordinates on the world sheet, or light cone bases for the
tangent planes, respectively. The flat tangent plane gamma matrices in the light
cone basis are

γ + = γ 1 + γ 0 = −
(

0 0

2 0

)
, γ − = γ 1 − γ 0 =

(
0 2

0 0

)
, (40)

and the transformation of the integration measure to the light cone coordinates on
the world sheet is

dτdσ = 1

2
dξ+dξ−, dτdσ

√−g = dξ+dξ−g+−.

As in the previous case of fermions on a space-like surface, the spin connection

�α = −i	0
1αS1

0 = 1

2
	0

1αγ 1γ0,
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anti-commutes both with γ 0 and γ 1 and will not appear in the Dirac action if we
split the derivatives symmetrically between ψ̄ and ψ .

The resulting action for spinors on the world sheet of the wire is

S = 1

2

∫
dτdσ

√−g
[
i heα

a

(
ψ̄ · γ a · ∂αψ − ∂αψ̄ · γ a · ψ

) − 2mcψ̄ · ψ
]

= 1

2

∫
dξ+dξ−g+−

[
i he++

(
ψ̄ · γ + · ∂+ψ − ∂+ψ̄ · γ + · ψ

)

+ i he−−
(
ψ̄ · γ − · ∂−ψ − ∂−ψ̄ · γ − · ψ

) − 2mcψ̄ · ψ
]
. (41)

In the next step we insert the components of the two-dimensional Dirac spinor

ψ =
(

ψ
√+

ψ
√−

)
, ψ̄ = (−ψ

√−,∗,−ψ
√+,∗)

and the γ -matrices (40),

S =
∫

dξ+dξ−[
i he−+

(
ψ

√+,∗ · ∂+ψ
√+ − ∂+ψ

√+,∗ · ψ
√+)

− i he+−
(
ψ

√−,∗ · ∂−ψ
√− − ∂−ψ

√−,∗ · ψ
√−)

+ 2mce−+e+−
(
ψ

√−,∗ψ
√+ + ψ

√+,∗ψ
√−)]

.

This can be rearranged as

S =
∫

dξ+dξ−[
i h

√
e−+ψ

√+,∗ · ∂+
(√

e−+ψ
√+)

− i h∂+
(√

e−+ψ
√+,∗) · √

e−+ψ
√+ − i h

√
e+−ψ

√−,∗ · ∂−
(√

e+−ψ
√−)

+ i h∂−
(√

e+−ψ
√−,∗) · √

e+−ψ
√−]

+ 2mce−+e+−
(
ψ

√−,∗ψ
√+ + ψ

√+,∗ψ
√−)]

=
∫

dξ+dξ−[
i h

(
�∗√−∂+�√− − ∂+�∗√− · �√− − �∗√+∂−�√+

+ ∂−�∗√+ · �√+
) + 2mc

√
e−+e+−

(
�∗√+�√− + �∗√−�√+

)]
. (42)

The metric has completely disappeared in the kinetic terms, due to absorption
into the half-differentials

�√− = √
e−+ψ

√+, �√+ = √
e+−ψ

√−. (43)

The spinors are invariant under coordinate transformations on the world sheet, and
transform under Lorentz transformations in the tangent plane according to

ψ
√+(ξ+, ξ−) → ψ ′√+(ξ+, ξ−) = (

�++
)1/2

ψ
√+(ξ+, ξ−),
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ψ
√−(ξ+, ξ−) → ψ ′√−(ξ+, ξ−) = (

�−−
)1/2

ψ
√−(ξ+, ξ−).

The half-differentials � are invariant under Lorentz transformations of the tangent
plane, but transform under world sheet coordinate transformations

ξ+ → ξ ′+(ξ+), ξ− → ξ ′−(ξ−)

according to

�√−(ξ+, ξ−) → � ′√−(ξ ′+, ξ ′−) = �√−(ξ+, ξ−)

√
∂ξ−

∂ξ ′− ,

�√+(ξ+, ξ−) → � ′√+(ξ ′+, ξ ′−) = �√+(ξ+, ξ−)

√
∂ξ+

∂ξ ′+ .

The action after inclusion of the gauge potentials is

S =
∫

dξ+dξ−[
2mc

√
e−+e+−

(
�∗√+�√− + �∗√−�√+

)

+ i h�∗√−∂+�√− − i h∂+�∗√− · �√− + 2q�∗√−A+�√−

− i h�∗√+∂−�√+ + i h∂−�∗√+ · �√+ − 2q�∗√+A−�√+
]
.

The geometry of the world sheet affects mass terms, and would also affect
orthogonal vector potential terms, through the (1/2, 1/2) differential

√
e−+e+−,

but again the virtue of the equation is to make a connection between the conformal
field formalism and fermions in low-dimensional systems.

5. EXISTENCE OF SPINORS AND HALF-DIFFERENTIALS IN TWO
DIMENSIONS

Equations (28, 29) and (37, 39) illustrate the general 2-1 correspondence
between vector and spinor representations of rotations and Lorentz transformations
in the particular setting of two-dimensional spaces.3

For a general manifold M of dimension d, the 2-1 correspondence can cause
problems with the construction of minimal (i.e. 2[d/2]-dimensional) spinor fields
(Penrose and Rindler, 1984; Borel and Hirzebruch, 1959; Milnor, 1963). For every
intersection Ci ∩ Cj �= ∅ of coordinate patches on M we have to assign spinor

3 In two dimensions the correspondence takes the particularly simple form � = U2(�), because all
irreducible representations of the abelian groups SO(2) and SO(1,1) are one-dimensional. Therefore
both the two-dimensional vector and spinor representations have to split into one-dimensional rep-
resentations, and there can be no further intertwining factors in the correspondence for the reduced
representations.
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transition matrices Uij = U−1
ji , which for every intersection Ci ∩ Cj ∩ Ck �= ∅ have

to satisfy the consistency condition

UjkUkiUij = 1. (44)

Since the consistency condition is fulfilled for vectors and � = U 2(�), the two
possibilities are

UjkUkiUij = ±1

and the question is whether the signs of all the spinor transition matrices can be
assigned in such a way that the condition (44) is satisfied.

It is clear from the correspondences (35) and (43), that in two dimensions
we will have an equivalent topological obstruction for the existence of half-
differentials. For half-differentials we have to resolve the sign ambiguity of the
square roots (∂zi/∂zj )1/2 or (∂ξ±

i /∂ξ±
j )1/2 for all intersections Ci ∩ Cj �= ∅ in such

a way that in all intersections Ci ∩ Cj ∩ Ck �= ∅ the consistency conditions
√

∂zk

∂zj

√
∂zi

∂zk

√
∂zj

∂zi

= 1 (45)

or √
∂ξ±

k

∂ξ±
j

√
∂ξ±

i

∂ξ±
k

√
∂ξ±

j

∂ξ±
i

= 1

are fulfilled. Both (44) and (45) amount to the same problem in Čech cohomology,
which is concerned with the assignment of signs to intersections of coordinate
patches. In their investigations of half-order differentials, Hawley and Schiffer
have noticed that the second cohomology group H 2(M, Z2) is trivial on orientable
two-dimensional manifolds M (Hawley and Schiffer, 1966). In plain language,
the sign ambiguities of transition functions of spinors or half-differentials can
always be resolved in these cases.

The equivalent constraints (44, 45) thus imply a kind of topological spin
theorem in two dimensions. If we want to consider two-dimensional field theories
as local coordinate expressions of theories capable of living on two-manifolds of
arbitrary topology, then we are constrained to integer and half-integer conformal
weights for the fields, or equivalently to standard spinor or tensor representations.
However, if our system has e.g. a simple specified topology and smoothly goes
into a three-dimensional system at the boundaries (which e.g. can be described
through a Hamiltonian containing a linear combination of bulk and surface terms,
as introduced in Dick (2003)), anyons are a possibility. Please also note that the
observations above do not exclude generalized statistics in many-particle systems,
because statistics is also a consequence of quantization rules and representations
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of permutation groups, see e.g. Nayak and Wilzcek (1996), Baugh et al. (2001)
and references there.

6. AN EXAMPLE: SPINORS AND HALF-DIFFERENTIALS
ON A SPHERE

The constraints (44) or (45) are void in this case, because the sphere can be
covered by only two sets of coordinates.

The coordinate singularities of polar coordinates at the poles are no particular
concern for us in illustrating how the map from spinors to half-differentials works.
But the conscientious reader can easily transform the results e.g. into stereographic
coordinates.

In polar coordinates, the general zweibein on a sphere of radius r

eϑ
1 = 1

r
cos α, eϑ

2 = 1

r
sin α, eϕ

1 = − sin α

r sin ϑ
, eϕ

2 = cos α

r sin ϑ
, (46)

yields two different equivalence classes of local γ matrices through expansion in
the basis (13)

γ ϑ
± = 1

r

(
0 exp(∓iα)

− exp(±iα) 0

)
,

γ
ϕ
± = 1

r sin ϑ

(
0 ∓i exp(∓iα)

∓i exp(±iα) 0

)
.

The gauge degree of freedom α ≡ α(ϑ, ϕ) arises from the possibility to locally
rotate the zweibein in every tangent plane.

For comparison, the induced γ matrices on the sphere from its embedding
are

	ϑ =
3∑

i=1

γ i∂iϑ =
(

0 σϑ

−σϑ 0

)
, 	ϕ =

(
0 σϕ

−σϕ 0

)
,

with the Pauli matrices on the sphere

σϑ = 1

r

(
− sin ϑ exp(−iϕ) cos ϑ

exp(iϕ) cos ϑ sin ϑ

)
,

σ ϕ = 1

r sin ϑ

(
0 −i exp(−iϕ)

i exp(iϕ) 0

)
.
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The rotation matrix (17) which locally maps the normal vector to �u3 is

R(ϑ, ϕ) =

⎛
⎜⎝

cos ϑ cos ϕ cos ϑ sin ϕ − sin ϑ

− sin ϕ cos ϕ 0

sin ϑ cos ϕ sin ϑ sin ϕ cos ϑ

⎞
⎟⎠ = exp(iϑL2) · exp(iϕL3) ,

with the standard so(3) generators in vector representation (Li)jk = −iεijk .
The spin representation matrices

Si = i

4

3∑
j,k=1

εijkγjγk = 1

2

(
σi 0

0 σi

)

yield the corresponding spinor rotation matrix

U(ϑ, ϕ) = exp(iϑS2) · exp(iϕS3) =
(
A(ϑ, ϕ) 0

0 A(ϑ, ϕ)

)

with

A(ϑ, ϕ) = exp
( i

2
ϑσ2

)
exp

( i

2
ϕσ3

)

=
(

cos(ϑ/2) exp(iϕ/2) sin(ϑ/2) exp(−iϕ/2)

− sin(ϑ/2) exp(iϕ/2) cos(ϑ/2) exp(−iϕ/2)

)
.

We also need the inverse matrix

A−1 =
(

cos(ϑ/2) exp(−iϕ/2) − sin(ϑ/2) exp(−iϕ/2)

sin(ϑ/2) exp(iϕ/2) cos(ϑ/2) exp(iϕ/2)

)

for the transformation of the induced γ matrices on the sphere. The transformed
induced γ matrices on the sphere are

γ ϑ = U · 	ϑ · U−1 =
(

0 A · σϑ · A−1

−A · σϑ · A−1 0

)
= 1

r

(
0 σ 1

−σ 1 0

)
,

γ ϕ = U · 	ϕ · U−1 =
(

0 A · σϕ · A−1

−A · σϕ · A−1 0

)
= 1

r sin ϑ

(
0 σ 2

−σ 2 0

)
.

This corresponds to the gauge α = 0 for the zweibein (46) on the sphere, and
the reduction of the induced γ matrices in terms of the inequivalent bases of
irreducible matrices is again conveniently expressed with the matrix (15),

M · γ ϑ · M−1 =
(

γ ϑ
+ 0

0 γ ϑ
−

)
, M · γ ϕ · M−1 =

(
γ

ϕ
+ 0

0 γ
ϕ
−

)
.
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For the mapping of the spinors to half-differentials on the sphere, we could
use the covariantized conformal field formalism from the appendix. However, in
agreement with the development in the previous sections, we will first switch to
conformal gauge.

The conformal gauge conditions on the sphere

sin2 ϑ(∂ϑξ 1)2 + (∂ϕξ 1)2 = sin2 ϑ(∂ϑξ 2)2 + (∂ϕξ 2)2,

sin2 ϑ ∂ϑξ 1 · ∂ϑξ 2 + ∂ϕξ 1 · ∂ϕξ 2 = 0.

can easily be solved through

ξ 1 = ln tan(ϑ/2), ξ 2 = ϕ,

i.e. we have

z = ln tan(ϑ/2) + iϕ

and

gzz̄ = 1

2
r2 sin2 ϑ = 2r2 exp(z + z̄)

[1 + exp(z + z̄)]2
.

Up to a phase, the non-vanishing components of the zweibein are

ezz̄ = ez̄z
∗ = 1

2
r sin ϑ = r

1 + exp(z + z̄)
exp

(
z + z̄

2

)
.

In the basis, where the γ 3 components were gauged away in the induced γ matrices
on the sphere, a spinor has components (cf. (27))

ψ =

⎛
⎜⎜⎜⎜⎝

ψ
√

z̄

χ
√

z

χ
√

z̄

ψ
√

z

⎞
⎟⎟⎟⎟⎠ = U · ψD = U ·

⎛
⎜⎜⎜⎝

ψI,1

ψII,1

ψII,2

ψI,2

⎞
⎟⎟⎟⎠ ,

and e.g. two of the four resulting half-differentials on the sphere are (cf. (35))

�√
z =

(
r

1 + exp(z + z̄)

)1/2

exp

(
z + z̄

4

)
ψ

√
z̄,

�√
z̄ =

(
r

1 + exp(z + z̄)

)1/2

exp

(
z + z̄

4

)
ψ

√
z.

This may seem like an unusual parametrization for coordinates and fermions
on the sphere, but the geometry is completely hidden in the tangential derivative
and potential terms, while in the remaining terms it is reduced to the universal
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factor

√
ezz̄ez̄z = r

1 + exp(z + z̄)
exp

(
z + z̄

2

)
.

7. CONCLUSION

The primary objective of the present paper was to establish the connection
between the two known mathematical formalisms to describe fermions in two
dimensions. Spinors can always be mapped into half-differentials through multi-
plication with square roots of zweibein components.

An examination of the mapping at the Lagrangian level revealed the specific
advantages and disadvantages of half-order differentials compared to the equiv-
alent, but much more common spinor formalism. The mapping from spinors to
half-differentials eliminates geometry factors in derivatives and potential terms
parallel to the two-dimensional space, and leaves only a universal geometry fac-
tor

√
ezz̄ez̄z or

√
e−+e+− for mass and orthogonal derivative terms. In particular,

the mapping gauges away spin connection terms in equations of motion for low-
dimensional fermions, at the expense of the local mass term and the position
dependent factor in front of orthogonal derivative terms.

The use of half-order differentials is not limited to isothermal coordinates
in two dimensions, but in other parametrizations utilizes anholonomic bases of
tangent vectors, which would usually be avoided. Therefore half-differentials lend
themselves naturally to general investigations of fermions in low-dimensional sys-
tems, because generic investigations of two-dimensional manifolds (like e.g. the
general dynamics of string world sheets) usually rely on isothermal coordinates.
For investigations within a given background geometry, the choice of preference
between spinors or half-differentials will depend on how easy isothermal param-
eters can be found.

APPENDIX: THE COVARIANTIZED CONFORMAL FIELD
FORMALISM IN TWO DIMENSIONS

We explain the covariantized conformal field formalism in the Euclidean
framework. It works in a similar vein in the Minkowski domain, with the complex
coordinates z = x + iy replaced by light cone coordinates ξ± = σ ± τ (Dick,
1989).

The conformal gauge conditions gxx = gyy , gxy = 0 read in complex coor-
dinates

gzz = gz̄z̄
∗ = 0. (A1)
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If z, z̄ are complex conformal parameters such that the conformal gauge conditions
(A1) are fulfilled, coordinate changes which preserve conformal gauge are limited
to conformal transformations

z → z′(z), z̄ → z̄′(z̄), (A2)

except for possible reflections z → z′(z̄), which we will exclude in the follow-
ing. The factorization (A2) of the two-dimensional diffeomorphism group into
effectively one-dimensional transformations is necessary for the consistency of
the definition of fields of conformal weight (h, h̄) with the transformation law

�(z, z̄) → � ′(z′, z̄′) = �(z, z̄)

(
dz′

dz

)−h (
dz̄′

dz̄

)−h̄

, (A3)

see e.g. Cardy (1988); Itzykson and Drouffe (1989).
For the generalization of Eq. (A3) beyond the realm of conformal gauge

fixing, assume now that z is any complex coordinate on the surface S, not nec-
essarily satisfying the conformal gauge conditions. The Beltrami parameters are
then defined through

µz̄
z = gz̄z̄

gzz̄ +
√

gzz̄
2 − gzzgz̄z̄

= gzz̄ −
√

gzz̄
2 − gzzgz̄z̄

gzz

= µz
z̄∗,

gzz

gzz̄

= 2µz
z̄

1 + µz
z̄µz̄

z
,

i.e. the metric can be written in terms of gzz̄ and the Beltrami parameters,

ds2 = 2gzz̄

1 + µz
z̄µz̄

z
|dz + µz̄

zdz̄|2.

The Beltrami parameters satisfy |µz̄
z| < 1 and transform non-linearly under ori-

entation preserving coordinate changes

z → u(z, z̄), ∂zu · ∂z̄ū > ∂zū · ∂z̄u, (A4)

µū
u = ∂ūz + µz̄

z∂ūz̄

∂uz + µz̄
z∂uz̄

= µz̄
z∂zu − ∂z̄u

∂z̄ū − µz̄
z∂zū

. (A5)

Eq. (A5) implies in particular

∂ū − µū
u∂u = (

∂ūz̄ − µū
u∂uz̄

) (
∂z̄ − µz̄

z∂z

)
, (A6)

i.e. there exist derivative operators

δz = ∂z − µz
z̄∂z̄, δz̄ = ∂z̄ − µz̄

z∂z (A7)
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which transform simply with a factor under the general coordinate transformation
(A4), and we have the composition law under z, z̄ → u, ū → w, w̄

∂z̄w̄ − µz̄
z∂zw̄ = (

∂z̄ū − µz̄
z∂zū

) (
∂ūw̄ − µū

u∂uw̄
)
.

Therefore we can consistently generalize the definition (A3) to define a conformal
field of weight (h, h̄) through the transformation law �(z, z̄) → � ′(u, ū) with

� ′(u, ū) = �(z, z̄)
(
∂zu − µz

z̄∂z̄u
)−h (

∂z̄ū − µz̄
z∂zū

)−h̄

= �(z, z̄)
(
∂uz − µu

ū∂ūz
)h (

∂ūz̄ − µū
u∂uz̄

)h̄
. (A8)

The 1-forms dual to the derivative operators (A7) are

δz = dz + µz̄
zdz̄

1 − µz
z̄µz̄

z
(A9)

and its conjugate, and we have

dz∂z + dz̄∂z̄ = δzδz + δz̄δz̄,

and the factorized transformation properties

δu = δzδzu, δū = δz̄δz̄ū.

In a general coordinate frame, we can think of fields of conformal weight (h, h̄)
as invariant objects with local representations �(z, z̄)(δz)h(δz̄)h̄.

The relevance of Beltrami parameters in two-dimensional field theory was
noticed for the first time by Baulieu and Bellon (1987). The bases (A7) and (A9)
and the definition (A8) of the covariant conformal fields were introduced in Dick
(1992).
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